expresslogic

Detecting and Avoiding Stack Overflow
in loT/Embedded Systems

ThreadX RTOS users have five powerful tools that are able
to help embedded applications avoid this system-crippling problem

One of the toughest (and unfortunately common) problems in embedded systems is stack overflow and
the collateral corruption or crash that it can cause. Often, the consequences of a stack overflow
manifest themselves far removed from the cause of the overflow itself, making the cause that much
more difficult to identify and fix. As a result, we have spent considerable effort inventing creative ways
our customers can deal with this potential problem. ThreadX developers have an array of tools at their
disposal to detect and even avoid stack overflow problems. These tools and techniques not only help
developers avoid stack overflow due to inadequate stack memory allocation, they also help minimize
RAM wasted by allocating excessive memory for thread stacks "just to be safe." The following tools and
techniques are discussed in this white paper:

e Manual stack inspection

e Kernel awareness and ThreadX stack analysis
e ThreadX run-time stack analysis

e |AR EWARM stack usage analysis

e TraceX stack analysis

Overview

In the C programming language, the stack—a region of memory in which local variables are located and
function arguments are passed—is allocated by the programmer, with the amount of memory allocated
based on factors such as machine architecture, OS, application design, and amount of memory available.
If the program should require more memory for its stack than has been allocated, the stack overflows—
without warning in most cases—which can corrupt other memory areas and often results in a program
malfunction or even a crash. Such problems are very difficult to trace back to the stack overflow, causing
programmers to expend considerable time and energy to find the underlying cause of the problem that
the application exhibits. As a result, they tend to over-allocate stack memory as a precaution, “just to be
safe.”

Traditionally, deciding how much memory to allocate for the stack has been a trial and error process. As
widely respected industry commentator and consultant, Jack Ganssle, has observed:

"With experience, one learns the standard, scientific way to compute the proper size for a stack: Pick a
size at random and hope." -- Jack Ganssle, “The Art of Designing Embedded Systems,” Elsevier, 1999.

Page 1

© Express Logic 1-888-THREADX * www.rtos.com



In an RTOS, there is a separate stack for each thread, and each thread might have drastically different
stack size needs. Making things even more challenging, stack overflows often affect a somewhat
unrelated memory area — global variables, allocated memory, or another thread’s stack — and thus the
subsequent problem does not manifest itself until much later than when the overflow occurred.

Manual Stack Inspection

The most obvious and basic technique to prevent stack overflows is to manually inspect the stack
memory region and stack pointers for potential overflow. To facilitate this, ThreadX places a OxEF data
pattern throughout each thread’s stack. The idea here is to run the thread through its validation tests
and then review all of the thread stacks. The non-OxEF byte closest to the start of the stack represents
the high-water mark of that thread’s stack usage. Of course, if there are no remaining OXEF data
patterns in a thread’s stack, there is a high-probability that a stack overflow has occurred. The following
figure shows an example thread stack with the OxEF data pattern:

physical
addresses
Ox0000F200
Unused
Stack
Area
Typical
run-time
stack
growth
tx_stack_ptr
Thread's last
execution context

\

Ox0000FCOO0

Local variables and
C function nesting

In addition to detection of stack overflow, manual stack inspection can be used to tune the stack size.
For example, if a large area of unused stack space is found, it may indicate that the size for that thread’s
stack is excessive. Of course, this analysis assumes that the test suite is exercising the worst case call
tree depth for each thread. Note also that every thread stack must always have a minimum amount of
unused memory in order to save its context if an interrupt occurs at the highest point of stack used. The
exact amount needed varies by architecture, but is defined in each ThreadX port’s readme_threadx.txt
file.

Page 2

© Express Logic 1-888-THREADX * www.rtos.com



ThreadX Kernel Awareness and Stack Analysis

Most major embedded development tools provide what is called ThreadX kernel awareness. Such
awareness provides a single-click, system level view of ThreadX resources. Most of the ThreadX-aware
debuggers also provide thread stack analysis, which effectively automates the manual inspection
technique described above. The following screen shot shows an example of IAR’s Embedded Workbench
for ARM (EWARM), with its ThreadX kernel awareness for a Cortex-M3 target. Specifically, this
illustration shows the information related to the “thread” object:

r

& 1AR Embedded Workbench IDE = | G i
File Edit View Project Debug Disassembly Simulator ThreadX Teools Windew Help
OE & = | | | - TE Wb o
ZIe2aLEZ22|X
pl B TR
demo_threadx.c | tx_gueus_receive.c tx_gueue_send.c ] x | Watch *
—1 | Cunent CPU Registers  w Expression Yalue
/% Pickup the thread suspension count. #/ i RO = 0=20000E6C PC thread_0_counter 3
suspended count = gqueue_ptr -> ti_gueue_suspended c R1 = 0=20000F38 PRINASI thread_1_counter 58E16
R2 = D=FFFFFFFF BASEPE thread_2_counter 58548
/* Deteyrmine if there 1s room in the gueus. */ R3 = 0=z00000000 BASEPR! thread 3 counter 7
if (queue ptr -> tx gueue_available storage != 0) R4 = 0=z00000021 FAULTH. a4
I RS = 000000000 ECONTRO: t:reag—g—m“mer g
1| Ré = 0=00000000 CYCLECH Ihread—ﬁ—m“”:er ;
/* Make sure there are no threads suspended on L g; = gxgggggggg th::d_ —Counter B
. _ = 0=
=3 J{.f {suspended count == 0} RY - 0=FFFFEFFD :_
R10 = 0=080016CC
. N L R11 = 0=A100000E
/% Simply place the message in the queus. * R12 - 0=00000000
) R13 (SP) = 0=20001408
/* Reduce the amount of available storage. R14 (LR) = 0=028000367
queue ptr -> tx gueue_available storage--; [ APSE = 060000000
[+ IPSR = 0=00000000
/% Increase the engueued count. */ HEPSR = 0=x01000000
queue ptr -> CX_gueus engueued++; Z
FlC) « | m » < | n v ([0 m b
| Stack Ftr Stack Start Stack End Stack Size Stack Usage Pn i
Ox200011c0 0x20001030  Ox2000122f  B12 ez 1 Sleep
1 thread1 575 0x200013b8 0x20001238 0x20001437 512 184 16 Running
2 thread 2 585 0x200015c0 0x20001440 0x2000163f 512 184 16 Reachy L
3 thread 3 12 (200017d0 Ix20001645  Ox20001847 512 120 g semaphore 0 suspend... 1
4 thread 4 12 0x200019e0 OxZ0001850 Ox2000124f 512 120 8 Sleep
5 3 Ox20001bd0 Ox20001a58 Ox20001cH7 512 136 4 event flags
B £ thread 12 0x20001ded  OxZ0001cE0  0x20001ehf 512 120 i suspended T
= 7 thread7? 12 R e o g Sleep i
o e
'-E Thread List | Message Queues | Semaphores | Mutexes | Byte Pools | Block Pools | Timers | Event Flag Groups x
Log
Tue Dt 26 19:31:26 201 0: Download complete.
Tue Ot 26 13:31:26 2010 Loaded debugees: Chithread«conex-miiatDebug\Exetdemo_threadsx out
_ Tue Oct 26 13:31:26 2010 Target reset
(=]
El
a
=l « | 1 r
Ready |

© Express Logic

Page 3

1-888-THREADX * www.rtos.com



The key column is the Stack Usage column. The difference between the Stack Size and the Stack Usage
column yields the remaining stack size. For example, in the example shown thread 5 has a stack size of
512 bytes, while its current usage is 136 bytes. This means that there are 376 free bytes on thread 5’s
stack.

This information is obtained by the debugger automatically examining the thread’s stack memory for
the OxEF data pattern. The stack memory for thread 5 ranges from address 0x20001a58 through
0x20001c57. The figure below shows the memory dump of this stack area:

Gata 0=20007 ah8 - |Memur_l.J 'l |£| _ﬁ_ |ﬁ|

20001a50 58 1c 00 20 do O= 00 20 ef ef ef ef ef ef ef ef Koo . -
20001a60 ef =f ef ef =f ef =f ef ef ef ef ef ef ef ef £ ... L.
20001270 ef ef ef ef =f ef =f ef ef ef ef ef ef ef ef £ .. ... L.
20001280 ef =f ef ef ef =f =f ef ef ef ef ef ef ef ef ef ... ...
20001290 ef e=f ef ef ef =f =f =f ef ef ef ef ef ef ef ef ... L.
20001aa0 ef =f ef ef ef =f ef ef ef ef ef ef ef ef ef ef ... ... . ...
20001ab0 ef ef ef ef ef ef ef ef ef ef ef ef ef ef ef ef ... ..
20001ac0 ef ef ef ef =f ef =f ef ef ef ef ef ef ef ef £ ... L.
20001ad0 ef =f ef ef =f ef =f ef ef ef ef ef ef ef ef £ ... .. L.
20001lac0 ef =f ef ef ef =f =f ef ef ef ef ef ef ef ef ef ... .. L.
20001af0 ef =f ef ef ef =f =f =f ef ef ef ef ef ef ef ef ... L.
20001000 ef ef ef ef ef =f ef ef ef ef ef ef ef ef ef ef ... ... . ...
20001010 ef ef ef ef ef ef ef ef ef ef ef ef ef ef ef of ...
2000120 ef ef ef ef ef ef ef ef ef ef ef ef ef ef ef of ...
20001020 ef ef ef ef =f ef =f ef ef ef ef ef ef ef ef £ ... L.
20001040 ef =ef ef ef =f ef =f ef ef ef ef ef ef ef ef £ ... L.
20001b50 ef e=f ef ef ef =f =f ef ef ef ef ef ef ef ef ef ... ..
20001be0 ef e=f ef ef ef =f =f =f ef ef ef ef ef ef ef ef ... ...
20001070 ef ef ef ef ef =f ef ef ef ef ef ef ef ef ef ef ... ... ...
20001b80 ef ef ef ef ef ef ef ef ef ef ef ef ef ef ef ef ...
20001090 ef ef ef ef =f ef =f ef ef ef ef ef ef ef ef £ ... L.
20001bal0 ef =f ef ef =f ef =f ef ef ef ef ef ef ef ef £ ... . L.
20001bb0 ef e=f ef ef ef =f =f ef ef ef ef ef ef ef ef ef ... .. L.

20001bc0 ef ef =f ef ef ef ef =f ef ef ef ef ef ef ef ... .
qEDDledD Ob 00 20 &8 0Ob 00 20 £f £f £f £f 3d 1c OO0 OB h.. h.. ....=...

20001b=0 & 00 00 00 00 00 00 ©0 58 1a 00 20 OO0 QO 00 QOO ........ ..
20001b£0 00 00 00 00 00 OO0 00 o0 b4 Of 00 20 00 £f f= ££ ... .. ... ... C
20001=00 ©O0 0O OO0 00 57 04 00 08 %= 25 00 08 00 00 00 61 R a
20001=10 3e 1e 00 20 00 00 00 00 62 Ob OO 20 B9 13 00 OF .. ....h..

2000120 3c 1c 00 20 68 Ob 00 20 00 00 00 00 00 00 00 00 <.. h.. ........
20001c30 00 00 00 00 £f 03 00 08 £f £f £f £f 01 00 00 00 ............ . ...
20001c40 00 00 00 00 o1 22 00 08 00 00 00 00 £f £f £f £f ..., W

nnni~En =of af af =of =2f =f =f =Ff &N 1= NN 2N A~ N= 0NN 20

Memory

Manual inspection of the thread’s stack memory area shows that the lowest address not having the OxEF
data pattern is 0x20001bdO0. Subtracting this from the ending stack address of 0x20001c57 yields the
reported used stack size of 136 bytes. Of course, the IAR debugger takes care of all this manual work,
providing this valuable information via a simple mouse click.

ThreadX Run-time Stack Checking

The automated debugger stack checking is a powerful feature, but it does have some shortcomings. One
such shortcoming is that the stack overflow detection is still made by the developer. If the developer
doesn’t see the overflow, the problem may go undetected. Also, there is no mechanism to stop the
system immediately when the overflow occurs. This is where ThreadX run-time stack checking comes
into play.

Page 4

© Express Logic 1-888-THREADX * www.rtos.com



By default, the run-time stack checking in ThreadX is disabled. To enable run-time stack checking, simply
build the ThreadX library with TX_ENABLE_STACK_CHECKING defined. With stack checking enabled,
ThreadX examines the stack of every thread being scheduled prior to execution. In addition, every
suspending thread’s stack is analyzed. If an overflow condition exists, ThreadX immediately calls the
internal ThreadX default stack error handler _tx_thread_stack_error_handler.

Alternatively, the application may register its own stack error handler by supplying a callback function to
tx_thread_stack_error_notify.

In addition to detecting overflow conditions, ThreadX run-time stack checking keeps track of the high
water mark of stack usage. This address subtracted from the ending address yields the amount of stack
spaced used. The following figure shows the thread control block for thread 5. The last structure
member (named tx_thread_stack_highest_ptr) contains the highest used address of the thread'’s stack.
In this example, it matches the same value derived by the IAR kernel awareness.

. . . Watch =
The principal advantage of ThreadX run-time m—— alus L ocation
stack checking is that overflow detection Bl thread_5 <struct> 0x200005E8
. tx_thread_id 1414025796 Ox=20000BE5
occurs closer to the point where the tv_thread_run_count z 0x20000B6C

. t_thread_stack_ptr 020001800 Oxz20000B70
overflow occurred and it does not rely on a te_thread_stack_start 0xZ0001ASC  0x20000874
H +i t_thread_stack_end 020001 57 Ox20000B78
developer spotting the overflow condition. It | ™= " 1#=2-2 2220 Ena OEEEEt
also provides the high water mark so that — e thread fime_siice 0 0x20000880
) . X K . — t_thread_new_time_slice u} Oxz20000B84
stack size tuning is possible. Finally, there are te_thread_ready_next thread_5 (0x20... x200006&8
. . ’ t_thread_ready_prewvious thread_b (0x20... Ox20000B8C
some environments that simply don’t have be_thread_name 0x8002520 "thr... OxZ0000BS0
d d b k I . k — t_thread_priority 4 Ox20000594
automated debugger stack analysis, making I~ t_thread_state 7 Ox20000898
B . . — t_thread_delayed_suspend 0 D2 000089
ThreadX run-time checking the only option. b ihrond susponding 0 s OnOOB.AD
— t<_thread_preempt_threshold 4 M2 O000BA4
tx_thread_schedule_hook memsetivoid ¥ Ox20000B.A8
t=_thread_entry O=0800030F Ox20000BAC
— t<_thread_entry_parameter 5 Ox20000BB0
tx_thread_timer <struct> Ox20000BB4
tx_thread_suspend_cleanup Ox08002011 Ox20000B0D0O
t_thread_suspend_control_hbl... event_flags_0 (...0x20000B0D4
tx_thread_suspended_next thread_b5 (0x20... Ox20000B0DE
t_thread_suspended_prewviousthread_5 (0=20... 0x20000BDC
— t<_thread_suspend_info 1 OxZ20000BED
t«<_thread additional_suspend.. 020001 Z3C OxZ20000BE4
— t<_thread suspend_option 1 OxZ20000BES
— t<_thread suspend_status u} OxZ20000BEC
t_thread_created_next thread G (0=<20... Ox20000BFO0
LI+ Hhvasd ~rastacd mrvassicie tHharo=s A N2 MNe2NNNnEFa
Thread Control Block for thread_5
F— t<_thread_user_preempi_thre... 4 UxAUuuucuy
— t<_thread_inherit_pricrity 3z Ox<20000coy
— t«<_thread_owned_mutex_count 0 Ox<20000cos
_ rmsetfvoid * .. 0=<20000C0C
L 001800 0ooocto

Page 5

© Express Logic 1-888-THREADX * www.rtos.com



IAR EWARM Stack Usage Analysis

Another useful tool for determining proper stack memory use and allocation is IAR EWARM’s Stack
Usage Analysis. Under the right circumstances, the IAR EWARM linker can accurately calculate the
maximum stack usage for each call graph, starting from the program start, interrupt functions, tasks etc.
(each function that is not called from another function, in other words, a root). If you enable stack usage
analysis, a stack usage chapter will be added to the linker map file, listing for each call graph root the
particular call chain which results in the maximum stack depth.

In general, the compiler will generate this information for each C function, but if there are indirect calls
(calls using function pointers) in your application, you must supply a list of possible functions that can be
called from each calling function. If you use a stack usage control file, you can also supply stack usage
information for functions in modules that do not have stack usage information.

Result of an Analysis—The Map File Contents

When stack usage analysis is enabled, the linker map file contains a stack usage chapter with a summary
of the stack usage for each call graph root category, and lists the call chain that results in the maximum
stack depth for each call graph root. This is an example of what the stack usage chapter in the map file
might look like:

***x STACK USAGE ***

Call Graph Root Category Max Use Total Use
interrupt 104 136
Program entry 168 168
Program entry
" ilar program start": 0x000085ac
Maximum call chain 168 bytes
" iar program start" 0
" cmain" 0
"main" 8
"printf" 24
" PrintfTiny" 56
" Prout" 16
"putchar" 16
" write" 0
" dwrite" 0
" iar sh stdout" 24
" iar get ttio" 24
" iar lookup ttioh" 0
interrupt
"FaultHandler": 0x00008434
Maximum call chain 32 bytes
"FaultHandler" 32
interrupt
"IRQHandler": 0x00008424
Maximum call chain 104 bytes
"IRQHandler" 24
"do_something" in suexample.o [1] 80

© Express Logic

Page 6

1-888-THREADX * www.rtos.com



The summary contains the depth of the deepest call chain in each category as well as the sum of the
depths of the deepest call chains in that category. Each call graph root belongs to a call graph root
category to enable convenient calculations in check that directives.

Call Graph Log

To help you interpret the results of the stack usage analysis, there is a log output option
that produces a simple text representation of the call graph (--log call_graph).

Example output:

Program entry:
0 iar program start [168]
0 cmain [168]
0 iar data init3 [16]
8 iar zero init3 [8]
16 - [0]
8 iar copy init3 [8]
16 - [0]
0 low level init [O0]
0 main [168]
8 printf [160]
32 PrintfTiny [136]
88 Prout [80]
104 putchar [64]
120  write [48]
120  dwrite [48]
120 iar sh stdout [48]
144 iar get ttio [24]
168  iar lookup ttioh [O0]
120 iar sh write [24]
144 - [0]
88  aeabi uidiv [0]
88  aeabi idivO0 [0]
88 strlen [0]
0 exit [8]
0 exit [8]
0 exit [8]

0 iar close ttio [8]
8 iar lookup ttioh [0] ***
0 exit [8] =*x*

Each line consists of the following information:
e The stack usage at the point of call of the function
e The name of the function, or a single '-' to indicate usage in a function at a point
with no function call (typically in a leaf function)
e The stack usage along the deepest call chain from that point. If no such value could

be calculated, "[---]" is output instead. "***" marks functions that have already been
shown.

ThreadX Stack Usage Analysis

Here is a linker map chapter for Stack Usage Anaylsis performed on the ThreadX standard demo
application, “demo_threadx”
*%% STACK USAGE ***

Page 7

© Express Logic 1-888-THREADX * www.rtos.com



Call Graph Root Category Max Use Total Use

Program entry 300 300
thread 276 1 544
Uncalled function 260 2604

Program entry
" dar program start": 0x000029cd

Maximum call chain 300 Dbytes
" dar program start" 0
" cmain" 0
"main" 8
" tx initialize kernel enter" 8
"tx application define" 32
" tx byte allocate" 32
" tx thread system suspend" 16
" tx thread system return" 204
thread
"thread 0 entry": 0x00000655
Maximum call chain 260 Dbytes
"thread 0 entry" 8
" tx event flags set" 40
" tx thread system preempt check" 8
" tx thread system return" 204
thread
"thread 1 entry": 0x00000679
Maximum call chain 252 Dbytes
"thread 1 entry" 8
" tx queue send" 24
" tx thread system suspend" 16
" tx thread system return" 204
thread
"thread 2 entry": 0x000006a5
Maximum call chain 252 bytes
"thread 2 entry" 8
" tx queue receive" 24
" tx thread system suspend" 16

Page 8

© Express Logic 1-888-THREADX * www.rtos.com



" tx thread system return" 204

thread
"thread 3 and 4 entry": 0x000006d9

Maximum call chain 244  Dbytes
"thread 3 and 4 entry" 8
" tx semaphore get" 16
" tx thread system suspend" 16
" tx thread system return" 204
thread

"thread 5 entry": 0x00000719

Maximum call chain 260 Dbytes
"thread 5 entry" 16
" tx event flags get" 24
" tx thread system suspend" 16
" tx thread system return" 204
thread

"thread 6 and 7 entry": 0x00000745

Maximum call chain 276 Dbytes
"thread 6 and 7 entry" 8
" tx mutex put" 24
" tx mutex priority change" 24
" tx thread system suspend" 16
" tx thread system return" 204

Uncalled function
"SysTick Handler": 0x00001929

Maximum call chain 4 Dbytes
"SysTick Handler" 4

Uncalled function
" tx thread time slice": 0x00002409

Maximum call chain 0 Dbytes
" tx thread time slice" 0

Uncalled function
" tx timer expiration process": 0x000022ed

Maximum call chain 260 Dbytes

Page 9

© Express Logic 1-888-THREADX * www.rtos.com



" tx timer expiration process" 24

" tx thread timeout" 8
" tx event flags cleanup" 16
" tx thread system resume" 8
" tx thread system return" 204

The following functions were excluded from stack usage calculations:

" tx mutex thread release": 0x000024e3
" tx thread schedule": 0x000019dd
" tx thread shell entry": 0x000027a%

IAR EWARM Call Graph Output for demo_threadx

thread:
0 thread 0 entry [260]
8 tx event flags set [252]
48 tx thread system preempt check [212]
56 tx thread system return [204]
260 - [0]
48 tx thread system resume [212]
56 tx thread system return [204] **x*
56 tx timer system deactivate [4]
60 - [0]
8 tx thread sleep [228]
16 tx thread system suspend [220]
32 tx thread system return [204] ***
32 tx timer system activate [4]
36 - [0]

thread:
0 thread 1 entry [252]
8 tx queue send [244]
32 tx thread system resume [212] ***
32 tx thread system suspend [220] ***

thread:
0 thread 2 entry [252]
8 tx queue receive [244]
32 tx thread system resume [212] ***
32 tx thread system suspend [220] ***

thread:
0 thread 3 and 4 entry [244]
8 tx semaphore get [236]
24 tx thread system suspend [220] ***
8 tx semaphore put [228]
24 tx thread system resume [212] ***
8 tx thread sleep [228] ***

Page 10

© Express Logic 1-888-THREADX * www.rtos.com



thread:
0 thread 5 entry [260]
16 tx event flags get [244]
40 tx thread system suspend [220] ***

thread:
0 thread 6 and 7 entry [276]
8 tx mutex get [260]
24 tx mutex priority change [244]
48 tx thread system resume [212] ***
48 tx thread system suspend [220] ***
24 tx thread system suspend [220] ***
8 tx mutex put [268]
32 tx mutex prioritize [236]
56 tx thread system preempt check [212] ***
32 tx mutex priority change [244] ***
32 tx thread system preempt check [212] ***
32 tx thread system resume [212] ***
8 tx thread sleep [228] ***

Uncalled:
0 SysTick Handler [4]
4 - [0]

Uncalled:
0 tx thread schedule [---] (no info)

Uncalled:
0 tx mutex thread release [-excluded-]
8 tx mutex put [268] ***

Uncalled:
0 tx thread shell entry [---]
8 Indirect call [---]
8 tx thread system suspend [220] ***

Uncalled:
0 tx thread time slice [0]

Uncalled:
0 tx timer expiration process [260]
24 tx thread timeout [236]
32 tx queue cleanup [220]
40 tx thread system resume [212] ***
32 tx semaphore cleanup [220]
40 tx thread system resume [212] ***
32 tx mutex cleanup [220]
40 tx thread system resume [212] ***
32 tx block pool cleanup [220]
40 tx thread system resume [212] ***

Page 11

© Express Logic 1-888-THREADX * www.rtos.com



32 tx byte pool cleanup [220]
40 tx thread system resume [212] ***
32 tx event flags cleanup [228]
48 tx thread system resume [212] ***
32 tx thread system resume [212] ***
24 tx timer system activate [4] ***

Program entry:
0 iar program start [300]
0 cmain [300]
0 dar data init3 [12]
8 dar zero init3 [0]
8 dar copy init3 [4]
12 - [0]
0 low level init [O]
0 main [300]
8 tx initialize kernel enter [292]
16 tx initialize high level [24]
24 tx thread initialize [16]
32 iar Memset [8]
32  iar Memset word [8]
40 - [0]
24 tx timer initialize [16]
32 iar Memset [8] ***
16 tx initialize low level [0]
16 tx thread schedule [---] (no info) ***
16 tx application define [284]
48 tx block allocate [236]
64 tx thread system suspend [220] ***
48 tx block pool create [32]
72 _iar Memset [8] ***
48 tx block release [220]
56 tx thread system resume [212] ***
48 tx byte allocate [252]
80 tx byte pool search [28]
108 - [0]
80 tx thread system suspend [220] ***
48 tx byte pool create [32]

72  iar Memset [8] ***

48 tx event flags create [24]
64  iar Memset [8] **x*

48 tx mutex create [24]
64 ilar Memset [8] ***

48 tx queue create [32]
72 _iar Memset [8] ***

48 tx semaphore create [24]
64 iar Memset [8] ***

48 tx thread create [244]
80  iar Memset [8] ***

80 tx thread stack build [0]
80 tx thread system preempt check [212] ***

Page 12

© Express Logic 1-888-THREADX * www.rtos.com



80 tx thread system resume [212] ***
48 tx thread create [244] ***

48 tx thread create [244] ***
48 tx thread create [244] ***
48 tx thread create [244] ***
48 tx thread create [244] **~*
0 exit [8]
0 exit [8]
0 exit [8]
8 — [0]
Page 13

© Express Logic 1-888-THREADX * www.rtos.com



TraceX Stack Analysis

Another stack analysis tool available to ThreadX users is TraceX. Although the main purpose of TraceX is
to provide a system level, graphical view of what the application is doing, TraceX also analyzes the stack
usage for each thread represented in the trace buffer. TraceX does not provide a worst-case stack size
for the entire thread execution, but only the worst case stack usage within the captured trace. For
example, the following trace shows thread 5’s execution in the trace buffer:

-

riﬂ TraceX 5.2.0 - [CA\threadx\cortex-m3\iardemo_threadx.tr]

o

File Wiew Options Help

Sequential View | Time View

WO diI O & ) d 44 (9 cex PP

Context Summary
Event Summary

Event ID

| Interrupt

| Initialize/Idle

| Thread 0 (0x2000274C) [Pricrity: 1]

2QQQQQQQQQQQ
E55555555555
170

||||||||||||| I|IIIIIIIII|IIIIIIIII|

|Thread 1 (0x200027F8) [Priority: 16]

|Thread 2 (0x20002844) [Priority: 16]

|Thread 3 (0:x20002930) [Priority: 8]

| Thread 4 (0x200023FC) [Priority: 8]

|Thread 5 (0x20002AA8) [Pricrity: 4]

| Thread & (0x20002B54) [Priority: 8]

|Thread 7 (0x20002C00) [Pricrity: 8]

R BMME MBI} B MR Q

IEIiIEISIS
RSRFHSESPERGESrr R eSS cFHS R
180 190 200

BREEE o
Sl R R R R

Registered to: Express Logic

b

Event number 184 is thread 5’s call to tx_event_flag_get, which in turn suspends as shown by event 185
and the subsequent execution of other threads. The stack analysis of this trace buffer, selected by View

-> Thread Stack Usage:

© Express Logic

Page 14

1-888-THREADX * www.rtos.com



-

riﬂ TraceX Thread Stack Usage

= e |

Thread MName
thread 0 {0x2000274C)
thread 1 {Ox200027FE)
thread 2 (0x20002844)
thread 2 {0x20002950)
thread 4 {0x200029FC)
thread 5 (0x20002A48)
thread 6 {0x20002E54)
thread 7 (0x20002C00)

Stack Size
512
512
512
512
512
512
512
512

Availability

432
432
432
440
432
416
440
432

Usage Graph
Bl 15.63%
Bl 1563%
M 15.63%
B 14.06%
Bl 15.63%
B 12.75%
W 14.06%
Il 15.63%

Event ID
181

L

The TraceX view of thread stack usage shows that thread 5 has a minimal available stack of 416 bytes (or
used stack of 96 bytes). The reason TraceX shows less stack used than the other methods is that the
stack sampled in the trace buffer does not include the stack required to save the thread’s context.
However, it still provides a useful cross checking of the stack usage for thread execution captured within

the trace buffer.

Summary

ThreadX users must still deal with stack overflow issues as well as attempting to ascertain the minimal
amount of stack space required for each thread. However, ThreadX users have unparalleled stack

analysis tools at their disposal — eliminating much of the guesswork and hope!

© Express Logic

Page 15

1-888-THREADX * www.rtos.com



