

Page 1

© Express Logic 1-888-THREADX * www.rtos.com

Detecting and Avoiding Stack Overflow
in IoT/Embedded Systems

ThreadX RTOS users have five powerful tools that are able
to help embedded applications avoid this system-crippling problem

One of the toughest (and unfortunately common) problems in embedded systems is stack overflow and
the collateral corruption or crash that it can cause. Often, the consequences of a stack overflow
manifest themselves far removed from the cause of the overflow itself, making the cause that much
more difficult to identify and fix. As a result, we have spent considerable effort inventing creative ways
our customers can deal with this potential problem. ThreadX developers have an array of tools at their
disposal to detect and even avoid stack overflow problems. These tools and techniques not only help
developers avoid stack overflow due to inadequate stack memory allocation, they also help minimize
RAM wasted by allocating excessive memory for thread stacks "just to be safe." The following tools and
techniques are discussed in this white paper:

 Manual stack inspection

 Kernel awareness and ThreadX stack analysis

 ThreadX run-time stack analysis

 IAR EWARM stack usage analysis

 TraceX stack analysis

Overview
In the C programming language, the stack—a region of memory in which local variables are located and
function arguments are passed—is allocated by the programmer, with the amount of memory allocated
based on factors such as machine architecture, OS, application design, and amount of memory available.
If the program should require more memory for its stack than has been allocated, the stack overflows—
without warning in most cases—which can corrupt other memory areas and often results in a program
malfunction or even a crash. Such problems are very difficult to trace back to the stack overflow, causing
programmers to expend considerable time and energy to find the underlying cause of the problem that
the application exhibits. As a result, they tend to over-allocate stack memory as a precaution, “just to be
safe.”

Traditionally, deciding how much memory to allocate for the stack has been a trial and error process. As
widely respected industry commentator and consultant, Jack Ganssle, has observed:

"With experience, one learns the standard, scientific way to compute the proper size for a stack: Pick a
size at random and hope." -- Jack Ganssle, “The Art of Designing Embedded Systems,” Elsevier, 1999.

Page 2

© Express Logic 1-888-THREADX * www.rtos.com

In an RTOS, there is a separate stack for each thread, and each thread might have drastically different
stack size needs. Making things even more challenging, stack overflows often affect a somewhat
unrelated memory area – global variables, allocated memory, or another thread’s stack – and thus the
subsequent problem does not manifest itself until much later than when the overflow occurred.

Manual Stack Inspection
The most obvious and basic technique to prevent stack overflows is to manually inspect the stack
memory region and stack pointers for potential overflow. To facilitate this, ThreadX places a 0xEF data
pattern throughout each thread’s stack. The idea here is to run the thread through its validation tests
and then review all of the thread stacks. The non-0xEF byte closest to the start of the stack represents
the high-water mark of that thread’s stack usage. Of course, if there are no remaining 0xEF data
patterns in a thread’s stack, there is a high-probability that a stack overflow has occurred. The following
figure shows an example thread stack with the 0xEF data pattern:

In addition to detection of stack overflow, manual stack inspection can be used to tune the stack size.
For example, if a large area of unused stack space is found, it may indicate that the size for that thread’s
stack is excessive. Of course, this analysis assumes that the test suite is exercising the worst case call
tree depth for each thread. Note also that every thread stack must always have a minimum amount of
unused memory in order to save its context if an interrupt occurs at the highest point of stack used. The
exact amount needed varies by architecture, but is defined in each ThreadX port’s readme_threadx.txt
file.

Page 3

© Express Logic 1-888-THREADX * www.rtos.com

ThreadX Kernel Awareness and Stack Analysis
Most major embedded development tools provide what is called ThreadX kernel awareness. Such
awareness provides a single-click, system level view of ThreadX resources. Most of the ThreadX-aware
debuggers also provide thread stack analysis, which effectively automates the manual inspection
technique described above. The following screen shot shows an example of IAR’s Embedded Workbench
for ARM (EWARM), with its ThreadX kernel awareness for a Cortex-M3 target. Specifically, this
illustration shows the information related to the “thread” object:

Page 4

© Express Logic 1-888-THREADX * www.rtos.com

The key column is the Stack Usage column. The difference between the Stack Size and the Stack Usage
column yields the remaining stack size. For example, in the example shown thread 5 has a stack size of
512 bytes, while its current usage is 136 bytes. This means that there are 376 free bytes on thread 5’s
stack.

This information is obtained by the debugger automatically examining the thread’s stack memory for
the 0xEF data pattern. The stack memory for thread 5 ranges from address 0x20001a58 through
0x20001c57. The figure below shows the memory dump of this stack area:

Manual inspection of the thread’s stack memory area shows that the lowest address not having the 0xEF
data pattern is 0x20001bd0. Subtracting this from the ending stack address of 0x20001c57 yields the
reported used stack size of 136 bytes. Of course, the IAR debugger takes care of all this manual work,
providing this valuable information via a simple mouse click.

ThreadX Run-time Stack Checking
The automated debugger stack checking is a powerful feature, but it does have some shortcomings. One
such shortcoming is that the stack overflow detection is still made by the developer. If the developer
doesn’t see the overflow, the problem may go undetected. Also, there is no mechanism to stop the
system immediately when the overflow occurs. This is where ThreadX run-time stack checking comes
into play.

Page 5

© Express Logic 1-888-THREADX * www.rtos.com

By default, the run-time stack checking in ThreadX is disabled. To enable run-time stack checking, simply
build the ThreadX library with TX_ENABLE_STACK_CHECKING defined. With stack checking enabled,
ThreadX examines the stack of every thread being scheduled prior to execution. In addition, every
suspending thread’s stack is analyzed. If an overflow condition exists, ThreadX immediately calls the
internal ThreadX default stack error handler _tx_thread_stack_error_handler.

Alternatively, the application may register its own stack error handler by supplying a callback function to
tx_thread_stack_error_notify.

In addition to detecting overflow conditions, ThreadX run-time stack checking keeps track of the high
water mark of stack usage. This address subtracted from the ending address yields the amount of stack
spaced used. The following figure shows the thread control block for thread 5. The last structure
member (named tx_thread_stack_highest_ptr) contains the highest used address of the thread’s stack.
In this example, it matches the same value derived by the IAR kernel awareness.

The principal advantage of ThreadX run-time
stack checking is that overflow detection
occurs closer to the point where the
overflow occurred and it does not rely on a
developer spotting the overflow condition. It
also provides the high water mark so that
stack size tuning is possible. Finally, there are
some environments that simply don’t have
automated debugger stack analysis, making
ThreadX run-time checking the only option.

Thread Control Block for thread_5

Page 6

© Express Logic 1-888-THREADX * www.rtos.com

IAR EWARM Stack Usage Analysis
Another useful tool for determining proper stack memory use and allocation is IAR EWARM’s Stack
Usage Analysis. Under the right circumstances, the IAR EWARM linker can accurately calculate the
maximum stack usage for each call graph, starting from the program start, interrupt functions, tasks etc.
(each function that is not called from another function, in other words, a root). If you enable stack usage
analysis, a stack usage chapter will be added to the linker map file, listing for each call graph root the
particular call chain which results in the maximum stack depth.

In general, the compiler will generate this information for each C function, but if there are indirect calls
(calls using function pointers) in your application, you must supply a list of possible functions that can be
called from each calling function. If you use a stack usage control file, you can also supply stack usage
information for functions in modules that do not have stack usage information.

Result of an Analysis—The Map File Contents
When stack usage analysis is enabled, the linker map file contains a stack usage chapter with a summary
of the stack usage for each call graph root category, and lists the call chain that results in the maximum
stack depth for each call graph root. This is an example of what the stack usage chapter in the map file
might look like:

*** STACK USAGE ***

Call Graph Root Category Max Use Total Use

------------------------ ------- ---------

interrupt 104 136

Program entry 168 168

Program entry

 "__iar_program_start": 0x000085ac

 Maximum call chain 168 bytes

 "__iar_program_start" 0

 "__cmain" 0

 "main" 8

 "printf" 24

 "_PrintfTiny" 56

 "_Prout" 16

 "putchar" 16

 "__write" 0

 "__dwrite" 0

 "__iar_sh_stdout" 24

 "__iar_get_ttio" 24

 "__iar_lookup_ttioh" 0

interrupt

 "FaultHandler": 0x00008434

 Maximum call chain 32 bytes

 "FaultHandler" 32

interrupt

 "IRQHandler": 0x00008424

 Maximum call chain 104 bytes

 "IRQHandler" 24

 "do_something" in suexample.o [1] 80

Page 7

© Express Logic 1-888-THREADX * www.rtos.com

The summary contains the depth of the deepest call chain in each category as well as the sum of the
depths of the deepest call chains in that category. Each call graph root belongs to a call graph root
category to enable convenient calculations in check that directives.

Call Graph Log
To help you interpret the results of the stack usage analysis, there is a log output option
that produces a simple text representation of the call graph (--log call_graph).

Example output:

Program entry:

0 __iar_program_start [168]

 0 __cmain [168]

 0 __iar_data_init3 [16]

 8 __iar_zero_init3 [8]

 16 - [0]

 8 __iar_copy_init3 [8]

 16 - [0]

 0 __low_level_init [0]

 0 main [168]

 8 printf [160]

 32 _PrintfTiny [136]

 88 _Prout [80]

 104 putchar [64]

 120 __write [48]

 120 __dwrite [48]

 120 __iar_sh_stdout [48]

 144 __iar_get_ttio [24]

 168 __iar_lookup_ttioh [0]

 120 __iar_sh_write [24]

 144 - [0]

 88 __aeabi_uidiv [0]

 88 __aeabi_idiv0 [0]

 88 strlen [0]

 0 exit [8]

 0 _exit [8]

 0 __exit [8]

 0 __iar_close_ttio [8]

 8 __iar_lookup_ttioh [0] ***

 0 __exit [8] ***

Each line consists of the following information:

 The stack usage at the point of call of the function

 The name of the function, or a single '-' to indicate usage in a function at a point
with no function call (typically in a leaf function)

 The stack usage along the deepest call chain from that point. If no such value could
be calculated, "[---]" is output instead. "***" marks functions that have already been
shown.

ThreadX Stack Usage Analysis
Here is a linker map chapter for Stack Usage Anaylsis performed on the ThreadX standard demo
application, “demo_threadx”
*** STACK USAGE ***

Page 8

© Express Logic 1-888-THREADX * www.rtos.com

 Call Graph Root Category Max Use Total Use

 ------------------------ ------- ---------

 Program entry 300 300

 thread 276 1 544

 Uncalled function 260 264

Program entry

 "__iar_program_start": 0x000029cd

 Maximum call chain 300 bytes

 "__iar_program_start" 0

 "__cmain" 0

 "main" 8

 "_tx_initialize_kernel_enter" 8

 "tx_application_define" 32

 "_tx_byte_allocate" 32

 "_tx_thread_system_suspend" 16

 "_tx_thread_system_return" 204

thread

 "thread_0_entry": 0x00000655

 Maximum call chain 260 bytes

 "thread_0_entry" 8

 "_tx_event_flags_set" 40

 "_tx_thread_system_preempt_check" 8

 "_tx_thread_system_return" 204

thread

 "thread_1_entry": 0x00000679

 Maximum call chain 252 bytes

 "thread_1_entry" 8

 "_tx_queue_send" 24

 "_tx_thread_system_suspend" 16

 "_tx_thread_system_return" 204

thread

 "thread_2_entry": 0x000006a5

 Maximum call chain 252 bytes

 "thread_2_entry" 8

 "_tx_queue_receive" 24

 "_tx_thread_system_suspend" 16

Page 9

© Express Logic 1-888-THREADX * www.rtos.com

 "_tx_thread_system_return" 204

thread

 "thread_3_and_4_entry": 0x000006d9

 Maximum call chain 244 bytes

 "thread_3_and_4_entry" 8

 "_tx_semaphore_get" 16

 "_tx_thread_system_suspend" 16

 "_tx_thread_system_return" 204

thread

 "thread_5_entry": 0x00000719

 Maximum call chain 260 bytes

 "thread_5_entry" 16

 "_tx_event_flags_get" 24

 "_tx_thread_system_suspend" 16

 "_tx_thread_system_return" 204

thread

 "thread_6_and_7_entry": 0x00000745

 Maximum call chain 276 bytes

 "thread_6_and_7_entry" 8

 "_tx_mutex_put" 24

 "_tx_mutex_priority_change" 24

 "_tx_thread_system_suspend" 16

 "_tx_thread_system_return" 204

Uncalled function

 "SysTick_Handler": 0x00001929

 Maximum call chain 4 bytes

 "SysTick_Handler" 4

Uncalled function

 "_tx_thread_time_slice": 0x00002409

 Maximum call chain 0 bytes

 "_tx_thread_time_slice" 0

Uncalled function

 "_tx_timer_expiration_process": 0x000022ed

 Maximum call chain 260 bytes

Page 10

© Express Logic 1-888-THREADX * www.rtos.com

 "_tx_timer_expiration_process" 24

 "_tx_thread_timeout" 8

 "_tx_event_flags_cleanup" 16

 "_tx_thread_system_resume" 8

 "_tx_thread_system_return" 204

The following functions were excluded from stack usage calculations:

 "_tx_mutex_thread_release": 0x000024e3

 "_tx_thread_schedule": 0x000019dd

 "_tx_thread_shell_entry": 0x000027a9

IAR EWARM Call Graph Output for demo_threadx

 thread:

 0 thread_0_entry [260]

 8 _tx_event_flags_set [252]

 48 _tx_thread_system_preempt_check [212]

 56 _tx_thread_system_return [204]

 260 - [0]

 48 _tx_thread_system_resume [212]

 56 _tx_thread_system_return [204] ***

 56 _tx_timer_system_deactivate [4]

 60 - [0]

 8 _tx_thread_sleep [228]

 16 _tx_thread_system_suspend [220]

 32 _tx_thread_system_return [204] ***

 32 _tx_timer_system_activate [4]

 36 - [0]

 thread:

 0 thread_1_entry [252]

 8 _tx_queue_send [244]

 32 _tx_thread_system_resume [212] ***

 32 _tx_thread_system_suspend [220] ***

 thread:

 0 thread_2_entry [252]

 8 _tx_queue_receive [244]

 32 _tx_thread_system_resume [212] ***

 32 _tx_thread_system_suspend [220] ***

 thread:

 0 thread_3_and_4_entry [244]

 8 _tx_semaphore_get [236]

 24 _tx_thread_system_suspend [220] ***

 8 _tx_semaphore_put [228]

 24 _tx_thread_system_resume [212] ***

 8 _tx_thread_sleep [228] ***

Page 11

© Express Logic 1-888-THREADX * www.rtos.com

 thread:

 0 thread_5_entry [260]

 16 _tx_event_flags_get [244]

 40 _tx_thread_system_suspend [220] ***

 thread:

 0 thread_6_and_7_entry [276]

 8 _tx_mutex_get [260]

 24 _tx_mutex_priority_change [244]

 48 _tx_thread_system_resume [212] ***

 48 _tx_thread_system_suspend [220] ***

 24 _tx_thread_system_suspend [220] ***

 8 _tx_mutex_put [268]

 32 _tx_mutex_prioritize [236]

 56 _tx_thread_system_preempt_check [212] ***

 32 _tx_mutex_priority_change [244] ***

 32 _tx_thread_system_preempt_check [212] ***

 32 _tx_thread_system_resume [212] ***

 8 _tx_thread_sleep [228] ***

 Uncalled:

 0 SysTick_Handler [4]

 4 - [0]

 Uncalled:

 0 _tx_thread_schedule [---] (no info)

 Uncalled:

 0 _tx_mutex_thread_release [-excluded-]

 8 _tx_mutex_put [268] ***

 Uncalled:

 0 _tx_thread_shell_entry [---]

 8 Indirect call [---]

 8 _tx_thread_system_suspend [220] ***

 Uncalled:

 0 _tx_thread_time_slice [0]

 Uncalled:

 0 _tx_timer_expiration_process [260]

 24 _tx_thread_timeout [236]

 32 _tx_queue_cleanup [220]

 40 _tx_thread_system_resume [212] ***

 32 _tx_semaphore_cleanup [220]

 40 _tx_thread_system_resume [212] ***

 32 _tx_mutex_cleanup [220]

 40 _tx_thread_system_resume [212] ***

 32 _tx_block_pool_cleanup [220]

 40 _tx_thread_system_resume [212] ***

Page 12

© Express Logic 1-888-THREADX * www.rtos.com

 32 _tx_byte_pool_cleanup [220]

 40 _tx_thread_system_resume [212] ***

 32 _tx_event_flags_cleanup [228]

 48 _tx_thread_system_resume [212] ***

 32 _tx_thread_system_resume [212] ***

 24 _tx_timer_system_activate [4] ***

 Program entry:

 0 __iar_program_start [300]

 0 __cmain [300]

 0 __iar_data_init3 [12]

 8 __iar_zero_init3 [0]

 8 __iar_copy_init3 [4]

 12 - [0]

 0 __low_level_init [0]

 0 main [300]

 8 _tx_initialize_kernel_enter [292]

 16 _tx_initialize_high_level [24]

 24 _tx_thread_initialize [16]

 32 __iar_Memset [8]

 32 __iar_Memset_word [8]

 40 - [0]

 24 _tx_timer_initialize [16]

 32 __iar_Memset [8] ***

 16 _tx_initialize_low_level [0]

 16 _tx_thread_schedule [---] (no info) ***

 16 tx_application_define [284]

 48 _tx_block_allocate [236]

 64 _tx_thread_system_suspend [220] ***

 48 _tx_block_pool_create [32]

 72 __iar_Memset [8] ***

 48 _tx_block_release [220]

 56 _tx_thread_system_resume [212] ***

 48 _tx_byte_allocate [252]

 80 _tx_byte_pool_search [28]

 108 - [0]

 80 _tx_thread_system_suspend [220] ***

 48 _tx_byte_pool_create [32]

 72 __iar_Memset [8] ***

 48 _tx_event_flags_create [24]

 64 __iar_Memset [8] ***

 48 _tx_mutex_create [24]

 64 __iar_Memset [8] ***

 48 _tx_queue_create [32]

 72 __iar_Memset [8] ***

 48 _tx_semaphore_create [24]

 64 __iar_Memset [8] ***

 48 _tx_thread_create [244]

 80 __iar_Memset [8] ***

 80 _tx_thread_stack_build [0]

 80 _tx_thread_system_preempt_check [212] ***

Page 13

© Express Logic 1-888-THREADX * www.rtos.com

 80 _tx_thread_system_resume [212] ***

 48 _tx_thread_create [244] ***

 48 _tx_thread_create [244] ***

 48 _tx_thread_create [244] ***

 48 _tx_thread_create [244] ***

 48 _tx_thread_create [244] ***

 0 exit [8]

 0 _exit [8]

 0 __exit [8]

 8 - [0]

Page 14

© Express Logic 1-888-THREADX * www.rtos.com

TraceX Stack Analysis
Another stack analysis tool available to ThreadX users is TraceX. Although the main purpose of TraceX is
to provide a system level, graphical view of what the application is doing, TraceX also analyzes the stack
usage for each thread represented in the trace buffer. TraceX does not provide a worst-case stack size
for the entire thread execution, but only the worst case stack usage within the captured trace. For
example, the following trace shows thread 5’s execution in the trace buffer:

Event number 184 is thread 5’s call to tx_event_flag_get, which in turn suspends as shown by event 185
and the subsequent execution of other threads. The stack analysis of this trace buffer, selected by View
-> Thread Stack Usage:

Page 15

© Express Logic 1-888-THREADX * www.rtos.com

The TraceX view of thread stack usage shows that thread 5 has a minimal available stack of 416 bytes (or
used stack of 96 bytes). The reason TraceX shows less stack used than the other methods is that the
stack sampled in the trace buffer does not include the stack required to save the thread’s context.
However, it still provides a useful cross checking of the stack usage for thread execution captured within
the trace buffer.

Summary
ThreadX users must still deal with stack overflow issues as well as attempting to ascertain the minimal
amount of stack space required for each thread. However, ThreadX users have unparalleled stack
analysis tools at their disposal – eliminating much of the guesswork and hope!

