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Proper Priority Assignment Can Have a Major Effect 
on Real-Time Performance 

 

Adjusting thread priorities can reduce context switching  
and increase overall throughput by 80% 

 
 
Real-time software applications consist of multiple tasks or threads, each performing a portion 
ƻŦ ǘƘŜ ǎȅǎǘŜƳΩǎ ǿƻǊƪƭƻŀŘ under the management of a real-time operating system (RTOS). In a 
real-time system, a ǘƘǊŜŀŘΩǎ ǇǊƛƻǊƛǘȅ ǊŜŦƭŜŎǘǎ the urgency of its work, relative to other threads 
and activities of the system. RTOSes strive at all times to run the most urgent work that needs to 
be performed. A priority-based, preemptive scheduling RTOS will always run the highest priority 
thread that is άw9!5¸έ όƴƻǘ ōƭƻŎƪŜŘ ƻǊ ǎǳǎǇŜƴŘŜŘύ to run. But, the ultimate goal of many real-
time systems is throughput ς the more packets processed, bytes streamed, frames rendered per 
second, the better. Sometimes, unnecessary real-time responsiveness can actually add 
overheadΣ ŀƴŘ ǊŜŘǳŎŜ ǘƘŜ ǎȅǎǘŜƳΩǎ ǇŜǊŦƻǊƳŀƴŎŜΦ In those instances, there is a tradeoff between 
responsiveness and throughput. One example of such a tradeoff occurs when a system uses high 
priorities in an attempt to achieve fast response, but suffers increased overhead and reduced 
throughput as a result. The assignment of higher priorities to those application threads that 
respond to actions of other threads, or to events that occur outside the system, is effective in 
minimizing latency of such threads, and might be an appropriate for most applications. 
However, many times the system can achieve greater throughput by using a different approach 
to priority assignment that does not require each thread to have a high priority and the fastest 
possible response. 
 
By assigning unique priorities to all threads, a strict hierarchy of urgency is established. Since a 
preemptive scheduling RTOS will always run the highest priority (most urgent) thread that is 
άREADY,έ this assures the intended level of responsiveness for each thread. In an alternate 
approach, the RTOS runs threads of equal priority in a Round-Robin fashion, allowing each one 
to complete its work, or voluntarily relinquish its use of the CPU, before moving on to the next. 
In many cases, overall system throughput can be higher with the round-robin approach, and so 
it might be preferred if throughput is the more important system objective. In this paper, we will 
examine just how priority assignment affects system performance, and show how the use of 
unique priorities can actually add overhead and reduce overall throughput.  
 
The Context-Switch 
A context-switch is a complex procedure in which the RTOS saves all the information being used 
ōȅ ǘƘŜ ǊǳƴƴƛƴƎ ǘƘǊŜŀŘ όƛǘǎ άŎƻƴǘŜȄǘέύ ŀƴŘ loads the context of another thread in its place. A 
ǘƘǊŜŀŘΩǎ ŎƻƴǘŜȄǘ ƛƴŎƭǳŘŜǎ ƛǘǎ ǿƻǊƪƛƴƎ ǊŜƎƛǎǘŜǊ ǎŜǘΣ ǇǊƻƎǊŀƳ ŎƻǳƴǘŜǊΣ ŀnd other thread-critical 
information. The context is saved on the ǘƘǊŜŀŘΩǎ stack, or in a thread control block data 
structure, from which it gets re-loaded when the RTOS wants to run that thread again. 
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Context switches generally are the single most time-consuming RTOS operation in a real-time 
system, often taking hundreds of cycles to execute. The amount of processing varies from RTOS 
to RTOS, and processor architecture to architecture, but generally involves the following 
operations: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
Because of all the processing it requires, a context switch is one of the most important measures 
of real-time performance in embedded systems. While all RTOSes and processors go to great 
lengths to optimize the performance of their context switch operation, the application 
developer must ensure that a system performs as few context switches as possible. For a given 
application, the way priorities are assigned to individual threads can have a significant impact on 
the number of context switches performed. In particular, by running multiple threads at the 
same priority, rather than assigning them each a unique priority, the system designer can avoid 
unnecessary context switches and reduce RTOS overhead. This results in greater throughput, 
often the ultimate goal of the system. 
 
Other Benefits 
Assigning multiple threads the same priority also makes it possible for the RTOS to properly 
implement priority inheritance, round-robin scheduling, and time-slicing. Each of these 
mechanisms is important in a real-time system, and is difficult, if not impossible to implement, 
without running multiple threads at the same priority. Each can be used to keep system 
overhead low andτperhaps more importantlyτto keep system behavior understandable. 
9ȄǇǊŜǎǎ [ƻƎƛŎΩǎ ¢ƘǊŜŀŘ· w¢h{ ǇǊƻǾƛŘŜǎ ŘŜǾŜƭƻǇŜǊǎ ǿƛǘƘ ŀ ŎƘƻƛŎŜ ƻŦ ǇǊƛƻǊƛǘȅ ŀǎǎƛƎƴƳŜƴǘ 

Step Operation Cycles 

1 
{ŀǾŜ ǘƘŜ ŎǳǊǊŜƴǘ ǘƘǊŜŀŘΩǎ ŎƻƴǘŜȄǘ όƛŜΥ Dt ŀƴŘ CtU 
register values and PC) on the stack. 

20 - 100 

2 
Save the current stack pointer in the thread's control 
block. 

2 - 20 

3 Switch to the system stack pointer. 2 - 20 

4 Return to the scheduler. 2 - 20 

5 Find the highest priority thread that is ready to run. 2 - 50 

6 Switch to the new thread's stack. 2 - 50 

7 Recover the new thread's context. 20 - 100 

8 Return to the new thread at its previous PC. 2 - 40 

9 Other processing 0 - 100 

 
TOTAL  CYCLES 50 - 500  

Figure 2 ï A typical context switch involves a number of 
operations, each one requiring a number of CPU cycles 
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approaches, either unique priorities for each thread, or multiple threads at the same priority, or 
a combination of both. In this paper, we use ThreadX to implement each strategy on the same 
application code, and compare the results. To analyze system behavior in each case, we use our 
TraceX graphical analysis tool to illustrate, and to actually measure the difference in overhead 
and overall system performance. The result will be to show that, for certain types of real-time 
systems, the use of unique priorities can reduce overall system throughput, due to the higher 
number of context switch operations that result from that approach. 
 
An Example System 
Message passing is a common element of many real-time systems. A simple, but common 
ǎŎŜƴŀǊƛƻ ƛǎ ŦƻǊ ŀ ǘƘǊŜŀŘ ǘƻ ōŜ άǿŀƛǘƛƴƎέ ŦƻǊ ŀ ƳŜǎǎŀƎŜ ǘƻ ŀǇǇŜŀǊ ƛƴ ŀ ƳŜǎǎŀƎŜ ǉǳŜǳŜΣ ŀƴŘ ǿƘŜƴ 
ǘƘŜ ƳŜǎǎŀƎŜ ŀǇǇŜŀǊǎΣ ǘƘŜ ǿŀƛǘƛƴƎ ǘƘǊŜŀŘ ōŜŎƻƳŜǎ άREADYΦέ ¢ƘŜ w¢h{ ƛǎ ǊŜsponsible for keeping 
track of which threads are READY, which are waiting, and for recognizing when an event enables 
a waiting thread to become READY. Our example system will use this scenario to see how each 
approach to priority assignment handles the resulting activity and throughput. 
 
Preemption 
When a thread with priority higher than the active thread becomes READY to run (e.g., because 
the message it was waiting for finally arrived), the RTOS preempts the active thread. This 
preemption results in a context switch in which the context of the active thread is saved, the 
context of the higher priority thread is loaded, and the higher priority thread then runs on the 
CPU. This enables the higher priority thread to process the message immediately ς which results 
in greater responsiveness. But, context switches are fairly expensive in terms of processor cycles 
used, so the benefit to responsiveness has to be weighed against the additional overhead that is 
introduced. Preemption operates differently between a system of threads with unique 
priorities, as opposed to a system of threads all at the same priority. As a result, context 
switching occurs differently in each type of system. 
 
To illustrate the effect that various methods of priority assignment can have on context 
switching, consider a system with four threads, named A, B, C, and D. In this example, the 
threads operate in a producer-consumer fashion, with Thread D the producer thread, sending a 
message to each of three queues: A, B, and C. Thread D performs this in a loop 3 times, for a 
total of nine (9) messages sent.  
 
Threads A, B, and C each check for a message from Thread D in one of the 3 queues. If one is 
found, they retrieve it. If not, they wait until one arrives. After retrieving a message from the 
queue, the threads loop to look for another, in a while(1) infinite loop. The threads άǎǳǎǇŜƴŘέ 
(i.e., are no longer ready to run) if no message is available in the queue, and άǊŜǎǳƳŜέ when a 
message appears (sent from thread D). Each sequence of Threads A, B, C, and D (nine messages 
sent and nine messages retrieved) ǿƛƭƭ ŎƻƴǎǘƛǘǳǘŜ ŀ ά/ȅŎƭŜέ ƻŦ ǘƘƛǎ ŜȄŀƳǇƭŜ ŀǇǇƭƛŎŀǘƛƻƴΣ ŀǎ ǎƘƻǿƴ 
below in Figure-3: 
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Figure 3 ï Operational flow of example program, showing ñcyclesò consisting of 
Thread D sending messages to Threads A, B, and C and Threads A, B, and C 

retrieving those messages 

 
 

 
 
 

 
 

 
 
 

 
 
 
 

The operational code for this simple system would look something like the following: 

 
 void thread_a_entry()  

{  

 while(1)  

 {  

  receive_message_from_thread_a_queue();  

 }  

}  

void thread_b_entry()  

{  

 while(1)  

 {  

  receive_message_from_thread_b_queue();  

 }  

}  

void thread_c_entry()  

{  

 while(1)  

 {  

  receive_message_from_thread_c_queue();  

   }  

}  

void threa d_d_entry()  

{  

 while(1)  

 {  

For 1 - 3 

    send_message_to_thread_a_queue();      

   send_message_to_thread_b_queue();      

   send_message_to_thread_c_queue();  

   End Loop  

 }  

 Relinquish;  

}  

 

 

Figure 4 ï Pseudo code for example program. Note that Threads A, B, and C 
continuously loop retrieving messages from Thread D. Thread D sends a number of 

messages to each of the other threads, then relinquishes. 
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Figure 5 ïTo measure the impact of priority 
assignment, we set up two casesðone where all 

threads have the same priority and one where 
they each have a unique priority.  

Two Cases 
To illustrate how the priorities of the threads impact the total number of context switches 
performed by this systemΣ ǿŜΩƭƭ ŜȄŀƳƛƴŜ two cases. In ά/ŀǎŜ-мέΣ all threads are assigned the 
same priority, and will execute in a round-robin fashion. In Case-2, the four threads are assigned 
unique prioritiesΦ Lƴ ŜŀŎƘ ŎŀǎŜΣ ǿŜΩƭƭ measure the number of context switches performed, as well 
as the time it takes to complete an equal amount of work. Figure-5 illustrates the priority 
assignments in each case. 

 
 In Case-1, where all threads have the 
same priority, the threads run in a 
round-robin fashion where Threads 
A. B, and C each run until blocked 
waiting for another message to 
appear in its queue. Thread D sends 
nine messages, then relinquishes its 
turn so the other threads can run. In 
Case-2, the highest priority thread 
that is ready to run always runs. This 
means that Thread A will always run 
when a message is in its queue. If 
not, then Thread B will run if a 
message is in its queue, and so on for 
Thread C. Eventually, all 3 queues will 
be empty, enabling Thread D to run 
and send more messages. To see how 
priority assignment affects 
performance, we will use TraceX to 
measure the time it takes to 
send/receive all nine messages in 
each case. First, though, we will 
examine the event trace to see what 
events occur in each case. We will 
see that there is a significant difference 
between the two cases in the number of 
context switches performed, and this will 
result in a significant difference in 
performance between the two cases. 
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Figure 6 ï Event trace of Case-1: Equal Priorities. This shows each of 
Threads A, B, and C retrieving three messages, then Thread D sending each 

Thread three more messages. This cycle is repeated continuously. 

Case-1: All threads have the same priority (A=4, B=4, C=4, D=4) 
In Case-мΣ ǿŜΩǾŜ ŀǎǎƛƎƴŜŘ ŜŀŎƘ ǘƘǊŜŀŘ ŀ ǇǊƛƻǊƛǘȅ ƻŦ пΦ When all threads have the same priority, 
they will run in a round-robin fashion, in the order of their creation (A, B, C, D). In Figure 6, an 
execution event trace shows how the example operates, once Thread D has populated the 
message queues. Note how Threads A, B, and C each retrieve three messages from their 
respective queues, then suspend waiting for more. When all three have run, Thread D once 
again runs, populating each queue with three more messages. This sequence continues: 

 
Threads A, B, and C each read 3 messages from their message queues. The άvwέ (queue read)  
event indicates a successful read of one message from the queue. After 3 messages are read, 
the queue is empty, and the thread suspends, waiting for Thread D to send more messages. The 
άL{έ (internal suspend) event indicates that the RTOS suspends the thread and returns to its 
scheduler which initiates a context switch to the next thread in the round-robin sequence. 
Thread 5Σ ǘƘŜ άǇǊƻŘǳŎŜǊέ ǘƘǊŜŀŘΣ eventually gets to run, and sends more messages to the 
queues όŀǎ ǎƘƻǿƴ ōȅ ǘƘŜ άv{έ ŜǾŜƴǘύ. Note that as each of the first three messages is sent by 
¢ƘǊŜŀŘ 5 όŀǎ ƛƴŘƛŎŀǘŜŘ ōȅ ǘƘŜ άv{έ ŜǾŜƴǘύΣ ǘƘŜǊŜ ƛǎ ŀƴ LƴǘŜǊƴŀƭ wŜǎǳƳŜ όάLwέύ ŜǾŜƴǘΦ ¢Ƙƛǎ Lw ŜǾŜƴǘ 
refers to the fact that the thread waiting for that message ōŜŎƻƳŜǎ άǊŜŀŘȅέ ǘƻ ǊǳƴΣ ōǳǘ Ƴǳǎǘ 
wait its turn in the round-robin sequence. After the third message is sent (one to each waiting 
thread), the subsequent messages do not cause another IR, since those threads already have 
been resumed όƳŀŘŜ άǊŜŀŘȅέύ by the first message, which has not yet been retrieved. 
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Figure 7 ï Context Switch count for Case-1. Notice that only four context 
switches are required for a complete cycle of nine messages sent and 

received. The insert shows the count of various RTOS operations. 

In this case, there is exactly one context switch each time a thread completes its processing (is 
suspended waiting for a message to be put on its queue, or is finished sending messages in the 
case of Thread D), allowing the next thread in turn to run. The result is that there are a total of 
four context switches per άcycleέ between Thread AΩǎ retrieval of the first message sent to it by 
Thread D. Note below in Figure 6, the Start and Stop boundaries of one application cycle. 
Context switches between the Start and Stop are numbered, and the total (4) is reflected in the 
άǇŜǊŦƻǊƳŀƴŎŜ {ǘŀǘƛǎǘƛŎǎέ ŘƛǎǇƭŀȅ superimposed in the upper-right of Figure-7. 

 

 
 
 

 
 

 
 

In Case-1, nine messages are sent, nine messages are received,  
and four context switches occur. 

 



  
Page 8 

 
© Express Logic 1-888-THREADX * www.rtos.com 

Case-2: All threads are given unique priorities 
In Case-2, each thread is assigned a unique priority. Thread A=1, Thread B=2, Thread C=3, and 
Thread D=4. Since all threads have unique priorities, the highest priority thread that is ready to 
run is the one that the RTOS will run. Figure 8 below shows the event sequence for Case-2:  

 

 

 
 
 
Figure 8 above shows a period of processing that occurs repeatedly, immediately following 
¢ƘǊŜŀŘ 5Ωǎ ǎŜƴŘƛƴƎ ŀ ƳŜǎǎŀƎŜ ǘƻ ¢ƘǊŜŀŘ !Φ Here, as we can see, when a message is sent by 
Thread D, it causes an immediate Internal wŜǎǳƳŜ όάLwέ ŜǾŜƴǘύΣ Ƨǳǎǘ ŀǎ ƛƴ /ŀǎŜ-1. But, unlike 
Case-1, because all of the threads waiting for a message in Case-2 have a higher priority than 
Thread D, the receiving thread becomes the highest priority thread that is ready to run. As a 
result, the RTOS preempts Thread D, and performs a context switch to that thread (Context 
Switches #2, 4, 6, 8, 10, 12, 14, 16, and 18 shown in Figure 9 below). This is different from the 
events of Case-1, where the waiting threads all had the same priority as Thread D, so no 
preemption was caused as Thread D sent its messages to the queues. Here, once each thread 
retrieves its message ŦǊƻƳ ǘƘŜ ǉǳŜǳŜ όάvwέ ŜǾŜƴǘύ, it once again goes into a suspended state, 
waiting for another message (as indicated by the Internal SuspendΣ ƻǊ άL{έ ŜǾŜƴǘύ, and the RTOS 
does another context switch.  

Figure 8 ï Processing flow in Case-2. Note that after each message is sent by 
Thread D in this case, a preemption occurs and control is immediately transferred to 

the thread waiting for that message. 
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Figure 9 ï Context Switches for a complete Cycle in Case-2. Note 
additional RTOS event counts shown in the insert. 

Figure 10 - When tasks are assigned unique priorities, 350% more context 
switches occurred, resulting in a significantly less efficient system. 

 
In Case-2, nine messages are sent, and nine are retrieved,  

and eighteen context switches occur. 
 

 
 
 
 

 
In Case-2, nine messages are sent, and nine are retrieved, exactly the same as in Case-1. But, in 
Case-2, eighteen context switches occur for the same nine messages, as opposed to four in 
Case-1, an increase of 350%. This can be seen between the two άvwέ ŜǾŜƴǘǎ ŦƻǊ ¢ƘǊŜŀŘ ! noted 
above in Figure 9, compared to the previous case where only four context switches occur (Figure 
7). The unique priority assignment strategy of Case-2, where the threads that become ready are 
higher ion priority than the thread making them ready, results in a significantly greater number 
of context switches compared to the assignment of the same priority to the threads, as used in 
Case-1. Through the selection of thread priorities, the exact same application can have almost 

five times the number of context switches than it would have under optimal priority conditions. 
 
 

Case  Messages Context Switches 

Case-1: Equal Priorities  9 4 

Case-2: Unique Priorities  9 18 
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Figure 12 - Timing measurements show a significant increase in 
overhead with unique priorities 

Figure 11 ï Cycle Start and Cycle End event time stamps show elapsed time for 
a complete cycle. Case-1 (Equal Priorities) is shown on the left, while Case-2 

(Unique Priorities) is shown on the right. 

Timing Analysis 
Of course, the major implication of the extra context switches introduced by the use of 
unique priorities is the additional RTOS overhead those context switches cause. In order 
to measure the extra overhead introduced by the additional context switches, we  
measure the clock count differences between the cycle-boundary relinquish events. Each 
event has a unique time-stamp taken from the system clock. Subtracting ƻƴŜ άwhέ time stamp 
from the next yields the elapsed time for the cycle. In Case-1, we have 1024 tics, at a rate of 

200MHz, or 5.12ms. In Case-2, we have 1861 tics, for 9.30ms. As a result of the additional context 
switches and preemptions caused by the use of unique priorities in Case-2, the application 
suffers increased overhead.  

 

In this timed experiment, we used the ThreadX RTOS with a very fast 0.35ms context switch. The 
additional context switch operations resulting from the use of unique priorities with other 

RTOSes actually can add up to 250ms per context switch, depending on the RTOS used. The 
following results were observed: 

 

Priority 
Assignment  

Total 
Messages 
Per Cycle  

Total 
Time Per 
Cycle  

Average 
Time Per 
Message  

Messages Per 
Millisecond 
(Throughput)  

Case-1: Equal  9  5.074ms  0.563ms  1,776  

Case-2: Unique  9  8.788ms  0.976ms  1,024  
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Observations 
This experiment shows that fourteen additional context switches were performed in Case-2, and 
total processing time increased by more than 80%, while the exact same number of messages 

were sent and received. If context switch operations were not as fast as the 0.35ms in this 
example, the impact on total processing time would be even greater. The results here show 
more than an 80% increase in RTOS overhead, and a corresponding reduction in system 
throughput, as a result of using unique priorities for each application thread. 
 
The use of unique priorities might also make system performance unpredictable. Loss of 
predictability occurs because the context switch overhead varies as a result of the sequence of 
thread activation, rather than in a prescribed fashion, as with the round-robin scheduling used 
with threads of equal priority.  
 
The developer can eliminate this aspect of unpredictability by assigning multiple threads the 
same priority since there will always be a consistent number of context switches to perform a 
given amount of work. If distinct priorities are assigned to each thread, then the application 
developer needs to be acutely aware of the potential for variance in system performance and 
responsiveness. 
 
When to Use Unique Priorities 
While use of unique priorities might result in more context switches and reduced throughput 
than running multiple threads at the same priority, in some instances it is the appropriate thing 
to do. For example, if latency is more important than throughput, in the previous example, we 
would want Thread A to run as soon as a message arrives in its queue, rather than waiting for its 
round-robin turnΦ ¢ƻ ƳŀƪŜ ǎǳǊŜ ǘƘŀǘ ƘŀǇǇŜƴŜŘΣ ǿŜΩŘ ƳŀƪŜ ¢ƘǊŜŀŘ ! ƘƛƎƘŜǊ ƛƴ ǇǊƛƻǊƛǘȅ ǘƘŀƴ 
Thread D. Likewise with Threads B and C. We would achieve lower latency, but at the expense of 
cutting our throughput from 1,776 messages per millisecond to 1,024, as can be seen from the 
preceding table. 
 
Priority Inheritance and Time-Slicing 
Developers can best deal with the somewhat uncertain context switch overhead caused by 
thread priority selection by keeping as many threads as possible at the same priority level. In 
other words, only use different priority levels when latency outweighs throughput and 
preemption is absolutely required ς never in any other case.  
 
Furthermore, running multiple threads at the same priority makes it possible to properly 
address other system requirements such as priority inheritance, round-robin scheduling, and 
time-slicing. Each of these mechanisms is important in a real-time system, and each can be used 
to keep system overhead low andτperhaps more importantlyτto keep system behavior 
understandable. 
 

¶ Priority Inheritance is a mechanism employed by an RTOS to prevent deadlock in a case 
of priority inversion. Priority inversion occurs when a low priority thread owns a 
resource needed by a higher priority thread, but the lower priority thread gets 
preempted by a thread with a priority between the two. Thus, the low priority thread 
cannot run, since it has been preempted by a higher priority thread, and the resource it 
holds cannot be released. The high priority thread ends up waiting for the low priority 
thread to release the resource, effectively deadlocking the high priority thread.  
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Priority inheritance allows the low-priority thread to temporarily assume the priority of 
the high-priority thread waiting for the resource. This allows the low-priority thread to 
run to the point where it can release the resource, and then the high-priority thread can 
get it and run. If all threads had to have a unique priority, the low-priority thread could 
not assume the priority of the waiting thread, since that priority is already in use. 
Likewise, with a limit on the number of threads at a given priority, it will be impossible 
for the low priority thread to be raised to the level of the high priority thread if there are 
already the maximum number of threads at that priority. If the limit of threads at a 
priority is 1, then priority inheritance is never possible, and some other solution to 
priority inversion must be found.  
 

¶ Round-Robin Scheduling is a method used by an RTOS to run threads in a circular 
ŦŀǎƘƛƻƴΣ ƭŜǘǘƛƴƎ ŜŀŎƘ ǘƘǊŜŀŘ Ǌǳƴ ǳƴǘƛƭ ƛǘ ōŜŎƻƳŜǎ άōƭƻŎƪŜŘΣέ ƻǊ ǊŜƭƛƴǉǳƛǎƘŜǎ ƛǘǎ ǘǳǊƴ. In 
other words, none of the threads is preempted by a higher-priority thread. Round-robin 
scheduling allows multiple equally important activities to run at the same priority, while 
still retaining individual encapsulation. This approach is used in our Case-1 above, where 
all four threads have a priority of 4, and run in sequence without preemption from 
higher-priority threads. 
 

¶ Time Slicing is an RTOS scheduling method that distributes CPU cycles to multiple 
threads in a weighted manner. Most commonly, it is used to give threads at the same 
priority level a certain number of CPU cycles, rotating from thread to thread and then 
back to the beginning of the group continuously as long as those threads remain active. 
It also can be used to allocate percentages of CPU time to each thread. For example, 
giving Thread A 25%, Thread B 10%, Thread C 10%, and Thread D 55% of the CPU cycles 
while that priority is active. This is generally achieved by dividing an arbitrary number of 
/t¦ ŎȅŎƭŜǎ όŀ άōƭƻŎƪέύ ƛƴǘƻ ǇǊƻǇƻǊǘƛƻƴŀƭ ǇŀǊǘǎΦ Lƴ ǘƘis example, a block of 1000 cycles 
might be used (e.g., 5  on a 200MHz system) where Thread A executes for 250 cycles, 
Thread B for 100 cycles, Thread C for 100 cycles, and Thread D for 550 cycles, then 
returning to Thread A for another 250 cycles and so on. This allocation enables system 
designers to provide more time for threads they determine to require more operations, 
but not to preempt the other threads at the same priority.  

 
Conclusion 
Assigning multiple threads the same priority can have many beneficial effects and can help 
system designers avoid traps that threaten the proper operation of their real-time system. 
In particular, it can reduce overhead, increase throughput, and enable priority inheritance 
and time-slicing scheduling methodologies. The developer is encouraged to use as few 
distinct priorities as possible and to reserve unique priorities for those instances where true 
preemption is required. Many RTOSes offer both priority assignment options, but some limit 
the number of threads at a given priority. Worse yet, some RTOSes only allow a single 
thread at a given priority, making it impossible for those RTOSes to support the higher-
throughput round-robin scheduling approach, or to properly implement priority inheritance. 
It is important that the developer understand the restrictions of RTOSes that do not enable 
the assignment of multiple threads to the same priority, and to make the RTOS selection 
with this in mind. 


