expresslogic

Proper Priority Assignment Can Have a Major Effect
on Real-Time Performance

Adjusting thread priorities can reduce context switching
and increase overall throughput by 80%

Realtime softwareapplications consist ahultiple tasks orthreads eachperforming a portion

2F GKS aeé a uSder@ha manaygdtdent af la REMme operating system (RTOS8).a
reaktime system, al KNB | RQ3& LJIM& @gedcyiodits WdkEIatiGe@oiother threads

and activities of the systenRTOSes strive atl times to run the most urgent work that needs to
be performed A priority-based preemptive scheduling RTOS will always run the highest priority
thread thatist w9 ! 5, ¢ oy 20 o0f 2o@ph BR, he ulimatedgdal a8 nfaRyIdRl0

time systemss throughputg the more packets processed, bytes streamed, frames rendered per
secondthe better. Sometimegjnnecessaryeaktime responsiveness cactually add

overheaE | YR NBRdzOS (i KS Inthose in§aric@s; therdS\afradbiolf beg© S @
responsiveness and throughp@ne example of such a traddéafccurs when a system uskigh
prioritiesin an attemptto achievefast responsgbut suffersncreased overhead angduced
throughput as a resuliThe assignment dfigherpriorities tothoseapplication threadshat

respond to actions of other threads, or to events that occur outside the sysseeffective in
minimizing latencywf suchthreads andmight be an appropriate fomostapplications
However,many timeshe system can achievgreater throughput by using a different approach

to priority assignmenthat does not require each thread to havanigh priority and the fastest
possible response

By assigning unique priorities to all threads, a strict hierarchy of urgency is estdblistoe a
preemptive schedulin@TOS will always run the highest priority (most urgent) thread that is
OREAD¥ this assurethe intended level ofesponsivenesfor each thread Inanalternate
approach, the RTOS runs threads of equal priorityRoumnd-Robin fashion, allowing each one
to complete its workor voluntarily relinquish its use of the CRidfore moving on to the next.

In manycases, overall system throughptanbe higher with the roundgobin approachand so

it might be preferred if throufgput is the more important system objectivia this paper, we will
examine just how priority assignment affects system performance, and show how the use of
unique priorities caractuallyadd overhead and reduce overall throughput.

The Context-Switch

A ontext-switch is a complegrocedurein whichthe RTOSavesall the information being used

0& G(KS NHzyyAy3 (i KlbEBsth® cortektipfBanoth€ thigad $idipgaca. | y R

GKNBI RQa O2yGSEG AyOf dzRSa A (i &d othe dbakofitial NB I A & (1 S NJ 2
information. Thecontext is saved on thé K NBstagk béin a thread control block data

structure, from which it gets Hpoaded when the RTOS wants to run that thread again.

Page 1

© Express Logic 1-888-THREADX * www.rtos.com

Context switches generally are the single most tiommsumingRTO®peration in aeaktime

system, often taking hundreds of cycles to execute. The amount of processing varies from RTOS
to RTOSand processor architecture to architectutajt generally involves the following

operations:

N e

{II @S GKS OdzZNNBy G GKNBI -100
register values and PC) on the stack.

O i PO
block

- |swenemessen o o0
R e e e P N

Return to the new thread at its previous PC.

u Other processing 0-100

Figure 21 A typical context switch involves a number of
operations, each one requiring a number of CPU cycles

Because of all the processing it requires, a context switch is one of the most important measures
of realtime performance in embedded systems. While all RT@Be@processorgo to great

lengths b optimize the performance of their context switch operation, the application

developer must ensure that a system performdes context switches as possible. For a given
application, the way priorities are assigned to individual threads can have acsighimpact on

the number of context switches performed. In particular, by running multiple threads at the

same priority, rather than assigning them each a unique priority, the system designer can avoid
unnecessary context switches and reduce RTOS owerfiais results in greater throughput,

often the ultimate goal of the system.

Other Benefits

Assigning multiple threads the same priority also makes it posiiblbe RTO® properly

implementpriority inheritance, rounerobin schedulingand timeslidng. Each of these

mechanisms is important in a retine system, and is difficult, if not impossible to implement,

without running multiple threads at the same priority. Each can be used to keep system

overhead low and perhaps more importantly to keepsydem behavior understandable.

9ELINB&E [23A00Q48 ¢KNBIR:- we¢h{ LINROARSE RSOSt 2 LISNE

Page 2

© Express Logic 1-888-THREADX * www.rtos.com

approaches, either unique priorities for each thread, or multiple threads at the same priority, or
a combination of both. In this paper, wesei ThreadX to implement each strategy on the same
application code, andompare the results. To analyze system behavior in each cassseoarr
TraceXgraphical analysis totd illustrate, and to actuallyneasure the difference in overhead

and overall sgtem performance. The result will be to show thettr certain types of reaime
systemsthe use of unique priorities can reduce overall system throughput, due to the higher
number of context switch operations that result from that approach.

An Example System

Message passing is a common element of manytiesd systemsAsimple, but common

AO0SYFNAR2 A& F2NI I GKNBFIR G2 06S a6l AGAy3IE F2NI I)
GKS YSaal3asS | LIISFNES REKOYH | ¢ K3 ysgahsibjk l@EeRnNg SO2 YS &
track of which threads arRBEADYwhich are waiting, and for recognizing when an event enables

a waiting thread to becomBEADYOur example system will use this scenario to see how each

approach to priority assignment handles the ukigg activity and throughput.

Preemption

When a thread with priority higher than the active thread becorR&ADY0 run (e.g., because

the message it was waiting for finally arrived), the RTOS preempts the active thread. This
preemption results in a cdext switch in which the context of the active thread is saved, the
context of the higher priority thread is loaded, and the higher priority thread then runs on the
CPUThis enables the higher priority thread to process the message immeddtétich resilts

in greater responsiveness. But, context switches are fairly expensive in terms of processor cycles
used, so the benefit to responsiveness has to be weighed against the additional overhead that is
introduced. Preemption operates differently betweenystem of threads with unique

priorities, as opposed to a system of threads all at the same priority. As a result, context
switching occurs differently in each type of system.

To illustrate the effecthat various methods gbriority assignment cahaveon context
switching,considera system wittfour threads, named A, E,andD. In this example, the
threads operate in a producaronsumerfashion,with Thread D the producer thread, sendiag
messagédo eachof three queuesA, B, and CThread D performthis in a loop 3 timesfor a
total of nine (9) messages sent

Threads A, B, anddachcheck for a message from Thread e of the 3 queuedf one is

found, they retrieve it. If not, they wait until one arrives. After retrieving a message from the

queue, thethreads loopto look for another in a while(1) infinite loopThe threadsr & dza LISy R é
(i.e.,areno longer ready to run) if no message is available in the queued auds & ddves &

message appears (sent from thread D). Each sequence of ThkeBd€, and ine messages

sent and nine messages retrievad® f f O2y aGAGdz0iS | &/ @0t Sé¢ 2F (GKAA
belowin Figure3:

Page 3

© Express Logic 1-888-THREADX * www.rtos.com

Cycle 1 Cycle 2

1 1 1
1 1 1
1 1 1
1 1 1
1 1 1
1 1 1
Thread A] Receive 1 1
[Messages 1 1
1 1 1
1 1 1
1 1 1
Thread B ! ! !
l Receive l Receive !
: Messages : Messages :
1 1 1
1 1 1
Thread C ! ! !
M Receive H Receive X
| Messages | Messages |
1 1 1
1 1 1
Thread D | ! !
| Send Send Send Send Send Send
1 Messages Messages Messages Messages Messages Messages
: to Thread A to Thread B to Thread C to Thread A to Thread B to Thread C
i . .
Time

Figure 31 Operational flow of example program,s h o wi n g dorsigtingloe s €
Thread D sending messages to Threads A, B, and C and Threads A, B, and C

The operational code for this simple system would look something like the following

void thread_a_entry()
while(1)

receive_message_from_thread_a_queue();

}

}

void thread_b_entry()
while(1)

receive_message_from_thread_b_queue();

}

}

void thread_c_entry()
while(1)

receive_message_from_thread_c_queue();

}
}
void threa d_d_entry()

while(1)

{
Forl -3
send_message_to_thread_a_queue();
send_message_to_thread_b_queue();
send_message_to_thread_c_queue();
End Loop

Relinquish;

Figure 47 Pseudo code for example program. Note that Threads A, B, and C
continuously loop retrieving messages from Thread D. Thread D sends a number of
messages to each of the other threads, then relinquishes.

Page 4

© Express Logic 1-888-THREADX * www.rtos.com

Two Cases

Toillustrate how the priorities of the threads impact the total number of context switches
performed by this systelh 6 S Qf ftwo Sasds. Yidh /v 19@é8 threads are assignede

same priority and will execute in a rourabbin fashion. In Casg, the four threads areassigred
uniqueprioritiese Ly S| O KieaSure 3h8 numigeSofxcbritext switches performed, as well
as the time it takes t@omplete an equalamount of work Figure5 illustrates the piority
assignments in each case.

In Casel, where althreadshave the A Case-1 Case-2
same priority, the threads run in a

round-robin fashion wherdhreads 1
A. B, and @achrun until blocked

waiting for another message to

appear in its queuerhread D sends

nine messages, then relinquishes its

turn so the other threads can ruin 2
Case2, thehighest priority thread

that is ready to run always runshis
means that Thread A will always run
when a message is in its queue. If
not, then Thread B will run if a
message is in its queue, and so on for
Thread C. Eventually, all 3 queues will
be empty,enabling Thread D to run
and send more messagenseehow
priority assignmenaffects Thread A
performance we will use TraceX to 4
measure the time it takes to Thread B
send/receive all nine messages in
each case. First, though, we will
examine the event trace to see what Thread D
events occur in each case. We will

see that there is a significant difference
between the two cases in the number of

Thread A

Thread B

Thread C

Thread C

Figure 571 To measure the impact of priority
context switches performe and this will assignment, we set up two casesd one where all
result in a significant difference in threads have the same priority and one where

performance between the two cases. they each have a unique priority.

Page 5

© Express Logic 1-888-THREADX * www.rtos.com

Case-1: All threads have the same priority (A=4, B=4, C=4, D=4)

INnCasavz ¢6SQ@S | aaA3IySR WhéKll thirdadsBdverthelsamiedptdorgyNA & 2 F
they will run in a roundobin fashion, in the order of their creation (A, B, C,IDFigures, an

execution eventrace showshow the example operate®nce Thread D has populated the

message queues. Note how Threads A, B, and C each retrieve three messages from their

respective queues, then suspend waiting for more. When all three hayelrhread D once

againruns,populaing each queue with three more messagédsis sequence continues

10 TraceX 4.0.1 - [C:AExpress_LogickTraceX_4.0.1\TraceFiles\Case-2-3.trx]
File View Help

Sequential View ’ Time View

Context Summary thread A {thread B (thread C {thread D (0x20005920) thread A {thread B {thread C {thread D (

vent Sumn RODET DY DY DY D 03 DLDLDDIRDDY DDY DXl [[

Event Summary RRR!RRRIRRR!SSISSSSSSSRRRIRRRIRRKRHSSI

Event ID 80 100

ll
Interrupt 2
Initialize/Idle

[]
[]
[System Timer Thread {0x20002068) |
[Thread A (0x2000DD4C)]

(Thread B (0x20005878)]

(Thread C (0x20005AAC)]

(Thread D (0x20005920)] EI

< >
(< ==] k23 =)
Figure 6 1 Event trace of Case-1: Equal Priorities. This shows each of

Threads A, B, and C retrieving three messages, then Thread D sending each
Thread three more messages. This cycle is repeated continuously.

Threads A, B, andegachread 3 messagefrom their message queue$hed v Wotieueread)

eventindicates a successful read of one message from the qufite.3 messages amead,

the queue is empty, and the threaispendswaitingfor Thread Do send more messageshe

a L @nternal suspendgventindicates that the RTOS suspends the thread returns toits

schedulemwhich initiates a context switcto the next thread in tle roundrobin sequence

Thread5 = G KS & LINRevaiGaByNkts tol rEnliB semdEnore messages to the

queuesd & A K26y 0 @&.NotkiBatad eaghdf tHe &S tfirdedmessages is sent by

¢CKNBFR 5 o0Fla AYRAOIFIGSRIFIFELUKSNIV{éwS@EYSGOaal W6 NE
refers to the fact that the thread waiting for that messa@eés 02 YS& G NBI R&é¢ (2 NHzy =
wait its turn in he roundrobin sequence. After the third message is sent (one to each waiting

thread), the subsguent messages do not cause another IR, since those threads already have
beenresumed Y I RS dbpMifd fiR®message, which has not yet been retrieved.

Page 6

© Express Logic 1-888-THREADX * www.rtos.com

In this case, there is exactly one context switch each time a thread completes its processing (is
suspendedvaiting for a message to be put on its queue, or is finished sending meseabes

case of Thread)Dallowing the next thread in turn to run. The result is that thereatetal of

four context switches petcycle between ThreaddQ i@trievd of the first message sent to it by
Thread DNotebelowin Figure 6the Start and Stofoundariesof oneapplication cycle

Context switches betweethe Start and Stopre numbered, and the total (4) ieflected inthe
GLISNF 2 NXY I yOS {supéritngosed ik BsuppeiBhk ot Eigure7e

File View Help
General Summary - Entire System e
Sequential View Time View
N) thread A khread B M c Statistic Occurrences
Context Summary f y) ;
Context Switches 4
Event Summary RINQQQEQQQEQQQE ki 0
' 3 ’ “W Thread Preemptions 0
Event ID 60 | Thead Suspensions 3
| Thread Resumptions 3
Interrupts 0
Friority Imversions
[e] Deterministic 0
[Initialize/Idle] Undeterministic]
[System Timer Thread (0x2000£068) |
(Thread A (0x2000DD4C)]

(Thread B (0x20005878)

(Thread C (0Xx20005A4C)

(Thread D (0x20005520)

Cycle Start Cycle End|

< >

[E

Figure 71 Context Switch count for Case-1. Notice that only four context
switches are required for a complete cycle of nine messages sent and
received. The insert shows the count of various RTOS operations.

In Casel, nine messages are senhine messages are received,
and four context switches occur.

Page 7

© Express Logic 1-888-THREADX * www.rtos.com

Case-2: All threads are given unique priorities

In Case?, each thread is assigned a unique priorithread A=1, Thread B=2, Thread C=3, and
Thread D=4Since all threads have unique priorities, the highest priority thread that is ready to
run is the one that the RTOS will run. Fig8iteelow shows the event sequence for Case

1% TraceX 4.0.1 - [C:\Express Logicklrace® 4.0.1%TraceFiles\Case-1-3.1rx]
File View Help

Sequential View Time View
Context Summary ssthreathreathreasthreathreathread threathreathreathreathreathregthregthreathreathreathreathreahreatt
i (] i R i) (] (] i (] i i
Event Summary THHEHIEREREEEREHERERE
Event ID 220 240
llJJJJJJJJJJJJJJJJIIJJIIJJIIJIJJJJJJJJJJ
Interrupt w
Initialize/Idle

System Timer Thread (0x2000E068)

()
(]
(]
() 28 H] B

Thread & ((x2000004C)

(Thread B {0x20005378) |

(Thread C (0x20005AAC) |

(Thread D (0x20005520) |]

P57

Figure 8 1 Processing flow in Case-2. Note that after each message is sent by
Thread D in this case, a preemption occurs and control is immediately transferred to
the thread waiting for that message.

Figure 8aboveshows gperiod of processing that occurs repeatedly, immediately following

¢ KNBIFR 5Q4a &Sy RAY JHete, a¥vieZan lsghifen am@ssap&idNgdrit By | @
Thread Dit causesan immediate Internav S & dzYS 6 aLwé S @ISBUijunike 2dzad | & A
Casel, becausaall of the threadswaiting for a message in Ca&éave a higher priority than

Thread Dthe receivinghread becomes the highest priority thread that is ready to run. As a
result,the RS preemp Thread Dand performs a contextswitchto that thread (Context
Switches#2, 4, 6, 8, 10, 12, 14, 16, anddi®wn in Figur® below). This is different from the

events of Casé, wherethe waiting threadsll had the same priority as Thread $&no

preemption was caused as Thread D sent its mesdaghe queuesHere, mceeach thread

retrieves its messagé N2 Y (i KS | dzS,dzSncevagamnwgdes itasSsysfiended state,
waiting for another message (as indicated by the Internal Suspen@ NJ & Lafikthe RBOSY (0 0
does another context switch

Page 8

© Express Logic 1-888-THREADX * www.rtos.com

File View Help
Sequential View Time View

Context Summary
Event Summary

Event ID

General Summary - Entire System

v

Interrupt

System Timer Thread (0x2000£068)

(
(Initialize/Idle
(
(

Thread A (0x2000DD<C)

(Thread B (0x20005878)

(Thread C (0x20005A4C)

(Thread D (0x20005520)

Cycle Start

Statistic
Context Switches
Time Slices
Thread Preemptions
Thread Suspensions
Thread Resumptions
Interrupts
Priority Inversions
Deterministic
Undeterministic

Occurrences

4 R

co CcwwwoK

<
[<Jl=<J <] 257 [> [>>][]

Figure 91 Context Switches for a complete Cycle in Case-2. Note

additional RTOS event counts shown in the insert.

In Case2, nine messages are sent, and nine are retrieved, exactly the same as ifh. Bagein
Case2, eighteen context switches occur for theamenine messagesas opposed to four in

Casel, an increase of 3509 his can be seen between the twiov w £

SPSy i anotd2 NJ ¢ KNB I F

above in Figur®, compared to the previous case where only four context switches occur (Figure
7). Theunique priority assignment strate@f Case2, where the hreads that become ready are
higher ion priority than the thread making them readgsults in asignificantlygreater number

of context switches compared to the assigent ofthe same priorityto the threads, as used in
Casel. Through the selection of tiead priorities, the exact same application can have almost
five times the number of context switches than it would have under optimal priority conditions

Figure 10 - When tasks are assigned unique priorities, 350% more context
switches occurred, resulting in a significantly less efficient system.

In Case2, nine messages are sent, and nine are retrieved,

and eighteen context switches occur.

© Express Logic

Page 9

1-888-THREADX * www.rtos.com

Timing Analysis

Of course, the major implication of the extra context switches introduced by the use of
unique priorities is the additional RTOS overhead those context switches tawsder

to measure the extra overhead introduced byetadditional cont&t switches we
measurethe clock count differencesetween the cyclédoundary relinquish event&ach
eventhas a uniqudime-stamptaken from the system cloclSubtracting y S timelstamp

from the nextyields the elapsed time for the cycle.Casel, we have 1024 tics, at a rate of
200MHz, or 5.1@s. In Cas®, we have 1861 tics, for 9.86. As a result of the additional context
switches and preemptions caused by the use of unigue priorities inZ;dke application

suffers increased overhead

gt s EEREE BN EEBEEEEEEREEERE o
il el

e i " N :
IIIIJHL}IIIIIJHLIIIIJJIIIJHHIIII,J\HIIIIIJ\HllllllJ\H,llllJ
TeinCoomn ey

I —
LEY [system Timer Thvead (ox20008088) |
Thread & (ma00o00s) |)

[Theead B (6320005878 J:

[Tescmonsus | EFFR

| Theead B (02200058781 |
Theead © (0320005920}

[Thead ¢ (m20005880) |

Theesd D (0x20005920) H

fed<T b 1))

el T ko [>])o1]

Figure 111 Cycle Start and Cycle End event time stamps show elapsed time for
a complete cycle. Case-1 (Equal Priorities) is shown on the left, while Case-2
(Unique Priorities) is shown on the right.

In this timed experiment, we &8l the Thread)RTOS with aery fast0.35ms context switchThe
additional context switch operationgsulting from the use of unique prioritiegith other
RTOSeactuallycanaddup to 250rs per contextswitch, depending a the RTOS usedhd&
followingresultswere observed:

Total Total Average Messages Per
Messages | Time Per | Time Per Millisecond
Per Cycle Cycle Message (Throughput)

Priority
Assignment

Casel: Equal - 5.074s |0.56318 1,776
Case2: Unique - 8.788ns | 0.97G1s 1,024

Figure 12 - Timing measurements show a significant increase in
overhead with unique priorities

Page

© Express Logic 10 1-888-THREADX * www.rtos.com

Observations

This experiment shows th&burteen additional context switches were performed in C&eand
total processing time increasidy more than 806, while the exact same number of messages
were sent and receivedf contex switch operations wer@ot as fast ashe 0.351sin this
example, the impact on total processing time woulddyengreater.The results here show
more than an 80%ncreasen RTOS overheadnd a corresponding reduction in system
throughput,as a resulbf using unique priorities for each application thread.

The use of unique priorities miglaisomakesystemperformanceunpredictable Loss of
predictability occurdecausehe context switchoverheadvariesas a result of the sequence of
thread activaton, rather than in a prescribed fashion,wgh the roundrobin scheduling used
with threads of equal priority

The developer can eliminate this aspect of unpredictability by assigmittiple threads the
same priority since there will always be a dastent number of context switches to perform a
given amount of worklf distinct priorities are assigned to each thread, thlae application
developer needs to be acutely awaretbé potential for variance in system performance and
responsiveness.

When to Use Unique Priorities

While use of unique priorities might result in more context switchied reduced throughput

than running multiple threads at the same priority, in some instances it is the appropriate thing

to do. For example, if latency is moregdortant than throughput, in the previous example, we

would want Thread A to run as soon as a message arrives in itsqatter than waiting for its
roundrobinturnd ¢ 2 YIF 1S &ddz2NB GKIF G KFLIISYSRY 4SQR YIS ¢
Thread D. Likewe with Threads B and C. We would achieve lower latency, but at the expense of

cutting our throughpufrom 1,776 messages panillisecondto 1,024 as can be seen from the

preceding table.

Priority Inheritance and Time-Slicing

Developersanbestdeal with the somewhauncertaincontext switchoverheadcaused by
thread priority selectiorby keepngas many threads as possible at the same priority level. In
other words, only use different priority levels whiatency outweighs throughput and
preemption is dsolutely required; never in any other case.

Furthermore running multiple threads at the samiority makes itpossible tgproperly
addressother system requirements such as priority inheritan@aind-robin schedulingand
time-slicing Each of thesenechanisms ignportantin a reaitime system and each can be used
to keep system overhead low angerhaps more importantly to keep system behavior
understandable

9 Priority Inheritance is a mechanism employed by an RTOfréwent deadlockn a case
of priority inversion. Priority inversion occurs when a low priority thread owns a
resource needed by a higher priority thread, but the lower priority thread gets
preempted by a thread with a priority between the two. Thus, the low priority thread
cannot run,since it has been preempted by a higher priority thread, and the resource it
holds cannot be released. The high priority thread ends up waiting for the low priority
thread to release the resource, effectively deadlocking the high priority thread.

Page

© Express Logic 11 1-888-THREADX * www.rtos.com

Priority inheritance allows the loygriority thread totemporarilyassume the priority of

the highpriority thread waiting for the resource. This allows tbes-priority thread to

run to the point where it can release the resource, and then the {mghbrity thread can

get it and runlf all threads had to have a unique priority, the lpwority thread could

not assume the priority of the waiting thread, since that priority is already in use.
Likewise, ith a limit on the number of threads at a given prioritywitl be impossible

for the low priority thread to be raised to the level of the high priority thread if there are
already the maximum number of threads at that priority. If the limit of threads at a
priority is 1, then priority inheritance is never podeitand some other solution to

priority inversion must be found.

1 Round-Robin Scheduling isa methodusedby an RTO® run threads in a circular
FlrakKazys fSGGAy3a SIHOK GKNBFR NHzy daia At AG o0S
other words, none bthe threads ipreempted by a highepriority thread.Roundrobin
schedulingallows multiple equally important activities to run at the same priority, while
still retaining individual encapsulatiofhis approach is used in our Cdsabove, where
all four threads have a priority of 4, and run in sequence without preemption from
higherpriority threads.

9 Time Slicing is an RTOS scheduling method tHestributes CPU cycles to multiple
threads in a weighted manneost commonly, it is used to give threaalsthe same
priority level a certain number of CPU cycles, rotating from thread to thread and then
back to the beginning of the group continuously as long as those threads remain active.
It alsocanbe used toallocate percentages of CPU time to each #du.dor example
givingThread A25%, fireadB 10%, fireadC10%,and ThreadD 55% of the CPU cycles
while that priority is activeThis is generally achieved by dividing an arbitrary number of
/t! OeoftSa oI aof 207 ¢isexampbiiazolodkIFRAOR MRS 2 VI £ LI N
might be usedd.g.,58s on a 200MHz systemyhere Thread A executes for 250 cycles,
ThreadBfor 100 cyclesThreadCfor 100 cycles, andhreadD for 550 cycles, then
returning to hreadAfor another 250 cycles and so on. Taliecationenables system
designesto providemore time for threadghey determineto require more operations,
but not to preempt the other threads at the same priority.

Conclusion

Assigning multiple threads the same priority can have many beneficial effects and can help
system designers avoid trafsat threaten the proper operation of their redime system.

In particular, it can reduce overhead, increase throughput, and enable priority inheritance
and timeslicing scheduling methodologieEhe developer is encouraged to use as few
distinct priorities as possible and to reserve unique priorif@sthose instances where true
preemption is requiredMany RTOSes offer both priority assignment options, but some limit
the number of threads at a given priority. Worse yet, some RTOSes only allow a single
thread at a given priority, making it impossible for those RTOSes to support the-higher
throughput roundrobin scheduling approach, or to properly implement priority inheritance.
It is important that the developer understand the restrictions of RTOSedlthabt enable

the assignment of multiple threads to the same priority, and to make the RTOS selection
with this in mind.

Page

© Express Logic 12 1-888-THREADX * www.rtos.com

